Social Icons

Pages

viernes, 6 de febrero de 2015

CONCEPTO DIFERENCIAL

CONCEPTO  DIFERENCIAL


La forma en que hemos abordado el concepto de derivada, aunque existen varios conceptos, fue el encontrar la relación de la pendiente de la línea recta y´ =f ´(x) que era tangente a la función. Para un punto en particular podemos llegar a la definición de la derivada f ‘(x) y vimos que f ‘(x1) es la pendiente de la recta tangente a la curva en x=x1.

El diferencial se puede tomar en el sentido geométrico como la elevación de la tangente desde el punto en que se toma el diferencial.

Recuérdese que la derivada de la función en el punto es la pendiente de la recta tangente a la función en el punto, como sabemos que la tangente de un ángulo es igual al cociente entre el cateto opuesto (incremento de y) y el cateto contiguo (incremento de x) de un hipotético triángulo rectángulo, sólo hay que despejar el incremento de y que equivale a nuestro diferencial.

Vista geométricamente, la elevación se produce verticalmente a partir del punto en que se toma el diferencial. El incremento  \Delta x \, que se tome representará el alejamiento horizontal que haga desde el punto en cuestión.


Así la elevación de la tangente que se obtenga como resultado dependerá del punto en cuestión y del alejamiento horizontal que se tomen, que en la formulas matemáticas están definidos respectivamente por x \, y \Delta x \,.

No hay comentarios.:

Publicar un comentario

 

Sample text

Sample Text

Sample Text

 
Blogger Templates